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Abstract

The goal of structural health monitoring is to provide reliable information regarding damage states that include damage

presence, location, and severity. Damage diagnosis is performed by utilizing measurements that are obtained from a

structure being monitored. However, time-varying environmental and operational conditions such as temperature and

external loading may produce an adverse effect on damage detection within the structure exposed to these changes.

Therefore, in order to achieve successful structural health monitoring goals, it is necessary to develop data normalization

techniques which distinguish the effects of damage from those caused by environmental and operational variations. In this

study, nonlinear principal component analysis based on unsupervised support vector machine is introduced and

incorporated with a discrete-time prediction model and a hypothesis test for data normalization. The proposed nonlinear

principal component analysis characterizes the nonlinear relationship between extracted damage-sensitive features and

unmeasured environmental and operational parameters by employing kernel functions and by solving a simple eigenvalue

problem. The performance of the proposed method is compared with that of another nonlinear principal component

analysis realized by auto-associative neural network. It is demonstrated that the proposed method is a promising data

normalization tool that is capable of detecting damage in the presence of environmental and operational variations.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The primary goal of structural health monitoring is to provide reliable information regarding damage
identification, damage location, and damage severity by using measurements obtained from a structure being
monitored. Once damage is detected, subsequent damage assessment is performed in order to locate damage
and estimate its severity. The basic premise is that damage alters the dynamic characteristics of the structure
when damage occurs.

In reality, time-varying environmental and operational conditions also affect the measured signals, so that
they may blur slight changes induced by damage or cause an adverse effect on detection of damage within
the structure exposed to these changes. Changes of temperature, humidity and wind are categorized as
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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environmental variations, while operational speed and traffic loading changes are in the category of
operational variations [1].

Numerous researchers demonstrated the changes of structural dynamic properties are related with
environmental and operational variations. Temperature, for example, is reported to change stiffness [2] as well
as boundary conditions [3]. Wind-induced vibration is known to have a significant influence on dynamics of
long span bridges by changing their damping characteristics [4]. Traffic loadings are also reported to alter the
measured natural frequencies [5] and damping ratios [6]. Therefore, in order to develop a robust structural
health monitoring system, it is important to distinguish the effects of damage from those caused by
environmental and operational variations.

Data normalization is a procedure to separate the signal changes caused by environmental and operational
variations from those by damage [7]. Data normalization can be performed in three different ways. When it is
possible to measure the environmental and operational parameters, various regression analyses can be
performed to relate the measured parameters with the environmental and operational conditions [8–10]. On
the other hand, when this direct measurement is not feasible, data normalization is performed by
characterizing the relationship between the environmental and operational parameters and damage-sensitive
features, and this case is the primary interest of this study. In Kullaa [11], factor analysis was used to eliminate
the effects of environmental variations on the measured features. The linear and nonlinear models were
attempted to reveal the relationship between temperature and four natural frequencies without measuring
environmental quantities. In Ruotolo and Surace [12], singular value decomposition was used to detect
damage when the structure was under two different working conditions, (e.g., with or without a concentrated
mass at the end of a cantilever beam). Damage was identified when the number of singular values exceeds a
threshold. In Chelidze and Liu [13], experimental data were used to separate the changes caused by operating
conditions from those caused by damage, and smooth orthogonal decomposition was employed to identify
damage. Finally, there is an ongoing effort to develop ‘‘reference-free’’ structural health monitoring
techniques that do not require direct comparison with previously obtained baseline data [14].

In this paper, a nonlinear principal component analysis is integrated with a discrete-time prediction model
and a hypothesis test and applied to structural health monitoring with an emphasis on data normalization.
The proposed nonlinear principal component analysis is based on unsupervised least-squares support vector
machine, and it characterizes the nonlinear relationship between extracted damage-sensitive features and
unmeasured environmental and operational parameters by employing kernel functions and by solving a simple
eigenvalue problem.

In the proposed method, an autoregressive and autoregressive with exogenous inputs (AR-ARX) model [15]
is first constructed to extract the damage-sensitive features from measured time signals. Then, nonlinear
principal component analysis is applied to characterize the hidden relationship between unmeasured
environmental and operational parameters and extracted damage-sensitive features. Finally a hypothesis test
named a sequential probability ratio test [16] is performed on the extracted features to evaluate the damage
state of the structure (see Fig. 1).

The proposed method is compared with another data normalization technique previously studied by Sohn
et al. [17]. In this previous study, auto-associative neural network was employed for data normalization. It was
demonstrated that the incorporation of auto-associative neural network with time series analysis and
statistical inference allowed detecting damage in the presence of operational and environmental variability. In
this study, advantages of the proposed least-squares support vector machine technique over auto-associative
neural network are discussed including reduced misclassification, better generalization, and assurance of a
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Fig. 1. A damage diagnosis procedure proposed in this study.
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unique and global solution. For meaningful comparison, the same data set that was used by Sohn et al. [17] is
utilized in this study.

This paper is organized as follows. In Section 2, a discrete-time prediction AR-ARX model used to extract
damage-sensitive features is briefly reviewed. Section 3 presents the theoretical formation of the proposed
nonlinear principal component analysis based on unsupervised least-squares support vector machine. First, a
supervised least-squares support vector machine algorithm is introduced and compared with a classical
supervised support vector machine. Then, an unsupervised least-squares support vector machine is described
and extended in order to realize nonlinear principal component analysis. In Section 4, a statistical damage
classification method named a sequential probability ratio test is presented for damage diagnosis. In Section 5,
the proposed method is applied to an experimental example of an eight-dof mass–spring system under various
input excitation levels. Finally, the conclusion and discussions are provided in Section 6.
2. Discrete-time prediction model

In this section, a main concept of an AR-ARX model is briefly outlined. More details can be found in Sohn
et al. [17]. A combination of autoregressive and autoregressive with exogenous inputs models is used for linear
discrete-time prediction of measured time signals. First, every measured time signal is standardized to have
zero mean and unit variance.

For a standardized time signal, x(t), an autoregressive model is constructed with r number of autoregressive
terms [18]:

xðtÞ ¼
Xr

i¼1

aixðt� iÞ þ exðtÞ, (1)

where ex(t) represents an error between measurement and prediction, and it is assumed that the error is caused
primarily by the unknown external input [17]. Note that linear discrete-time prediction using this
autoregressive model is applied to a single time signal, i.e., x(t) in Eq. (1) is a scalar. The r number of
coefficients, ai, can be estimated by various parameter estimation techniques [18].

Next, the error term, ex(t), in Eq. (1) is employed as an input for an autoregressive with exogenous inputs
model to construct the input/output relationship between ex(t) and x(t):

xðtÞ ¼
Xp

i¼1

bixðt� iÞ þ
Xq

j¼1

cjexðt� jÞ þ �xðtÞ, (2)

where p and q are the numbers of bi and cj coefficients, and ex(t) is the residual error. Similar to r parameters in
the autoregressive model, the p and q parameters are also estimated by various parameter estimation methods.

This two-stage time prediction using a combined AR-ARX model is similar to an autoregressive moving
average model described in Ljung [19], and it was suggested to keep the sum of p and q smaller than r, i.e.,
p+qpr. For a proper comparison, the numbers of the ai, bi, and cj coefficients are set equal to the ones
reported in Sohn et al. [17] (r ¼ 30, p ¼ 5, and q ¼ 5).
3. Principal component analysis

Principal component analysis is an orthogonal transformation of a coordinate system in which given data
can be described as a combination of new variables [20]. Principal component analysis is known as an efficient
way in reducing dimensionality of data, since a small fraction of the entire principal components can often
account for most of the data structure [21].

Linear principal component analysis aims to search for a transformed coordinate in the form of straight

lines in such a way that maximizes the variance of original variables. Linear principal component analysis is
realized by eigenvector decomposition of the data covariance matrix. The first eigenvector corresponding to
the largest eigenvalue of the covariance matrix represents the direction into which the variance of the projected
variable is maximized. This new variable projected onto the first eigenvector is called the first principal
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component, and the subsequent principal components associated with the remaining eigenvalues can be
computed by projecting the data onto the successive eigenvectors.

Linear principal component analysis can be generalized to nonlinear principal component analysis in
order to reveal the nonlinear correlations inherent in the data. Auto-associative neural network is one such
method [22]. Auto-associative neural network is a five-layer network that consists of input, mapping,
bottle-neck, de-mapping, and output layers as shown in Fig. 2(a). When auto-associative neural network is
trained, given data are used both as network inputs and outputs, i.e., in an auto-associative mode. Thus, the
dimensions of the input and output layers, namely, the number of neurons in the corresponding layers,
are identical. On the other hand, the dimension of the bottle-neck layer is designed to be less than those
of the input and output layers. Nonlinear principal component analysis is achieved via the bottle-neck
layer with a reduced dimension. However, training auto-associative neural network requires solving a
complex optimization problem and using several different initial values to avoid getting trapped in
possible local minima. It is also known that auto-associative neural network may over-fit data since the
training continues until it minimizes the difference between target outputs and network outputs.
Several approaches were suggested to overcome this over-fitting problem such as regularization and early
stopping schemes [22]. Besides auto-associative neural network, there are a number of nonlinear principal
component analysis methods such as self-organizing mapping [22], principal curves [23], and Hebbian
networks [24].
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In this study, nonlinear principal component analysis is achieved using unsupervised least-squares support
vector machine, also known as kernel principal component analysis [25], instead of auto-associative neural
network as shown in Fig. 2. It will be shown shortly after that kernel principal component analysis achieves
nonlinear principal component analysis in a relatively easy way by solving a simple eigenvalue problem in a
transformed space. Because a regularization term is explicitly included in the formation of the unsupervised
least-squares support vector machine, it avoids data over-fitting. Note that a different formulation of kernel
principal component analysis is also available as in Oh and Sohn [26] where emphasis is laid on performing
linear principal component analysis in the transformed coordinate system.

In the next subsections, a main concept of linear principal component analysis is first introduced. Then, two
kinds of supervised support vector machine such as classical support vector machine and its modification,
least-squares support vector machine, are presented in a way of introducing unsupervised least-squares
support vector machine. Finally, unsupervised least-squares support vector machine is presented to perform
nonlinear principal component analysis.

3.1. Linear principal component analysis

Let DN ¼ {xjARm� 1: j ¼ 1,y,N} denote a set of N number of centered, i.e., zero mean, m-dimensional
feature vectors extracted from measurements and v be the unknown normalized eigenvector in the
transformed coordinate system. (Another case that deals with non-centered data will be discussed shortly.)
Then, linear principal component analysis is performed to find v that maximizes the variance of the projected
variables vTx:

max
v
½VarðvTxÞ� ¼ max

v
½vTC1v�; subject to vTv� 1 ¼ 0, (3)

where Var( � ) is a variance operator and C1 ¼ (1/N)Sjxjxj
T.

The constrained optimization problem can be re-stated using Lagrangian, L1(v,l*):

L1ðv; l
�
Þ ¼ 1

2
vTC1v� l�ðvTv� 1Þ, (4)

where l* is a Lagrange multiplier. The solution of this optimization problem can be calculated from
@L1/@v ¼ 0 and @L1/@l* ¼ 0, which leads to the following eigenvalue problem:

l�v ¼ C1v (5)

where l* and v are eigenvalues and corresponding eigenvetors, respectively.
From Eq. (5), m number of eigenvalues and eigenvectors are calculated. The kth principal component for a

feature vector xj is computed as an inner product between xj and the corresponding kth eigenvector vk:

PCkðxjÞ ¼ ðvkÞ
Txj , (6)

where PCk (xj) represents the kth principal component of a feature vector xj.

3.2. Support vector machine

Support vector machine is a recently developed machine learning algorithm that has been applied to various
supervised classification problems [27]. Supervised learning is distinguished from unsupervised learning in its
employment of the pre-defined class labels. For supervised learning, a known class label is assigned to each
distinct class. For example, �1 is assigned to the data measured from an undamaged structure, and 1 to the
data measured from a damaged structure. Then, support vector machine is trained to estimate the boundary
between these two classes. When a new data set arrives, a suitable class label decided by the estimated
boundary is assigned to each data point.

Let FN ¼ {(xj,yj): j ¼ 1,y,N} denote a data set consisting of N number of m-dimensional feature vectors,
xj 2 Rm�1, extracted from measurements and the corresponding labels, yj 2 R. For simplicity, a linear and
binary classification problem, i.e., a problem to estimate a linear separating boundary between two labels
yjA{�1, 1}, is illustrated. Nonlinear and multi-class classification problems can be found in Schölkopf and
Smola [28].
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Support vector machine determines the separating boundary between two class data by maximizing the
margin and minimizing the misclassification. The maximization of the margin is achieved by minimizing kwk,
leading to the following constrained optimization problem:

min
w;n

t1ðw; nÞ ¼ min
w;n

1

2
wTwþ c

XN

i¼1

xi

" #
, (7)

subject to

yiðw
Txi þ bÞX1� xi; xiX0 and cX0; i ¼ 1; . . . ;N, (8)

where t1( � ), xi, and c are an objective function, a slack variable, and an unknown constant, respectively.
n ¼ [x1,y,xN]

T, w is a vector that defines the direction of the separating boundary, and b is a threshold.
Note that yjA{�1,1}, so 71 in an inequality constraint of Eq. (8) can be interpreted as threshold
values.

The first term in Eq. (7) plays an important role for regularization by discouraging ||w|| from becoming a
large value. A slack variable, xi, is adopted to consider a data point that is not properly classified by the
estimated boundary. Here, the misclassification is reduced by minimizing the linear summation of these non-
negative slack variables in Eq. (7) [27]. Finally, an unknown positive constant, c, is a regularization factor to
control the trade-off between the two terms in Eq. (7) [29].

3.3. Least-squares support vector machine

For the same data set, FN ¼ {(xj,yj): j ¼ 1,y,N}, least-squares support vector machine is developed to
simplify classical support vector machine without compromising its advantages [30]. The objective function is
reformulated:

min
w;e

t2ðw; eÞ ¼ min
w;e

1

2
wTwþ g

1

2

XN

i¼1

e2i

" #
; subject to yiðw

Txi þ bÞ ¼ 1� ei and gX0, (9)

where g is an unknown positive constant, and e ¼ [e1,y,eN]
T. Contrary to an inequality constraint of Eq. (8),

least-squares support vector machine adopts an equality constraint of Eq. (9), and 71 represent two target
values. For example, if yi ¼ –1, ei measures the error of wTxi+b to a target value of �1. Therefore,
ei represents the degree of scattering of within-class data, i.e., the data that have the same class label, with
respect to the corresponding target values of either 1 or –1 [30].

This modified least-squares support vector machine with an equality constraint tries to maximize the margin
and minimize within-class scattering. Least-squares support vector machine differs from classical support
vector machine primarily in the following two ways:
(1)
 Least-squares support vector machine uses an equality constraint instead of inequality one. In classical
support vector machine, the value of 1 in Eq. (8) is considered as a threshold rather than a target value.
(2)
 Least-squares support vector machine includes a linear summation of squared error terms in an objective
function instead of a linear summation of positive slack variables.
Due to these differences, least-squares support vector machine provides a set of linear equations to solve, while
classical support vector machine produces a quadratic optimization problem. Note that both methods
guarantee a global solution although it may be different with each other. More details about least-squares
support vector machine and comparison with conventional support vector machine can be found in Suykens
et al. [30].

3.4. Application of lease-squares support vector machine to linear principal component analysis

Principal component analysis, whether it is linear or nonlinear, is one of the unsupervised learning methods,
since labels, yi, for given data are not available. Therefore, a single target value of zero, instead of two target
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values of 71, is used when least-squares support vector machine is applied to principal component analysis.
The objective function is reformulated from Eq. (3) that is an established form for linear principal component
analysis:

max
w;e

t3ðw; eÞ ¼ max
w;e

g
1

2

XN

i¼1

e2i �
1

2
wTw

" #
; subject to wTxi ¼ ei, (10)

where g is an unknown positive constant that is determined by solving this optimization problem. Since ei

represent the within-class variance, the first term of an objective function in Eq. (10) is equivalent to the
variance of the projected variables in Eq. (3) except an additional coefficient of g/2. Moreover, Eq. (10)
explicitly shows that the regularization term of wTw/2 is included to avoid over-fitting. Note that maximizing
negative wTw/2 in Eq. (10) is equivalent to minimizing wTw/2 in Eq. (9). Compared with Eq. (9), the constraint
in Eq. (10) represents the single target value is zero and a bias, i.e., b in Eq. (9), is also zero since data are
centered [30]. By solving this optimization problem, one can find w, i.e., one of the eigenvectors in input space
that maximizes the variance of data covariance, and the corresponding principal component ei that is
projected on w.

3.5. Nonlinear principal component analysis

The mathematical formulation for linear principal component analysis can be easily extended to nonlinear
principal component analysis by using kernel method and a nonlinear mapping u( � ): Rm ! Rh where moh.
The nonlinear mapping transforms the features in the input space into a higher, possibly infinite, dimensional
space so that linear principal component analysis can be conducted in the extended dimensional space as
shown in Fig. 2(b).

Suppose linear principal component analysis is performed in the transformed space. Then, an objective
function similar to Eq. (10) can be constructed by using the transformed data, u(xi):

max
w;e

t3ðw; eÞ ¼ max
w;e

g
1

2

XN

i¼1

e2i �
1

2
wTw

" #
; subject to wTuðxiÞ ¼ ei, (11)

From Eq. (11), Lagrangian becomes:

L2ðw; e; aÞ ¼ g
1

2

XN

i¼1

e2i �
1

2
wTw�

XN

i¼1

aiðei � wTuðxiÞÞ, (12)

where ai is a Lagrange multiplier and a ¼ ½a1 . . . aN �
T 2 RN�1. The optimality can be obtained by:

@L2

@w
¼ 0! w�

XN

i¼1

aiuðxiÞ ¼ 0, (13)

@L2

@ei

¼ 0! gei � ai ¼ 0, (14)

@L2

@ai

¼ 0! ei � wTuðxiÞ ¼ 0, (15)

Substituting Eqs. (13) and (14) into Eq. (15) leads to the following eigenvalue problem:

Ka ¼ la, (16)

where l( ¼ 1/g) and a are eigenvalues and eigenvectors, respectively. The ijth entity of K matrix, Kij, is
defined as:

Kij � uðxiÞ
TuðxjÞ ¼ kðxi;xjÞ; i; j ¼ 1; . . . ;N. (17)

In Eq. (17), the kernel method is used based on the Mercer’s theorem; for any symmetric, continuous, and
positive-semidefinite function k(xi,xj), there exists a Hillbert space, H, a nonlinear map, u: Rm-H, and the
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inner product of two nonlinearly transformed features, u(xi)
Tu(xj), can be expressed as a kernel function [30].

This kernel method allows the inner products of two transformed feature vectors to be calculated
in the original input space without explicit computation of the nonlinear transformation, u( � ). Furthermore,
nonlinear principal component analysis is achieved by performing linear principal component analysis
in the transformed space [28]. Kernel functions frequently used in practice are polynomial, Gaussian, and
sigmoid kernels. In this study, a Gaussian kernel, k(xi,xj) ¼ exp(�||xi�xj||

2/r2), is selected, and r is
called a width. The selection scheme for r is described later. Further discussion on kernels can be found in
Refs. [25,27,28].

The kth nonlinear principal component for a feature vector xj is computed:

NLPCkðxjÞ ¼ ðwkÞ
TuðxjÞ ¼

XN

i¼1

ðakÞiuðxiÞ
TuðxjÞ ¼

XN

i¼1

ðakÞikðxi;xjÞ; (18)

where NLPCk(xj) and (ak)i represent the kth nonlinear principal component for a feature vector xj and the ith
component of the kth eigenvector ak, respectively.

In nonlinear principal component analysis, centering data, i.e., setting the mean of transformed
features to be zero, is not a trivial task, since the nonlinear mapping, u( � ), is not explicitly computed. To
overcome this difficulty, a centered kernel matrix, K*, is employed instead of K in Eq. (16). K* is derived
by subtracting the mean of the transformed feature vectors, l(u(x)) ¼ (1/N)Sju(xj) from the trans-
formed features. The ijth entry of the centered K* matrix, K�ij , is related to the original kernel matrix, K, in
Eq. (17):

K�ij � uðxiÞ �
1

N

XN

k¼1

uðxkÞ

 !T

uðxjÞ �
1

N

XN

k¼1

uðxkÞ

 !

¼ uðxiÞ
TuðxjÞ � uðxiÞ

1

N

XN

k¼1

uðxkÞ � uðxjÞ
1

N

XN

k¼1

uðxkÞ þ
1

N2

XN

k¼1

XN

l¼1

uðxkÞ
TuðxlÞ

¼ kðxi;xjÞ �
1

N

XN

k¼1

kðxi;xkÞ �
1

N

XN

k¼1

kðxj ;xkÞ þ
1

N2

XN

k¼1

XN

l¼1

kðxk;xlÞ: (19)

The kth nonlinear principal components for a feature vector xj using the centered kernel matrix can be
computed similarly.

4. Sequential probability ratio test

In the previous section, nonlinear principal component analysis is formulated based on unsupervised least-
squares support vector machine. For baseline data, xu

j ðtÞ, obtained from an undamaged structure, AR-ARX

coefficients denoted as fðbu
i ; c

u
j Þ : i; j ¼ 1; . . . ;Mg are estimated by Eq. (2) and corresponding nonlinear

principal components, NLPCkðb
u
i ; c

u
j Þ, can be extracted.

When a new data set, xd
t , is measured from a possibly damaged structure, the computation of the AR-ARX

coefficients denoted as fðbd
i ; c

d
j Þ : i; j ¼ 1; . . . ;Mg and the corresponding nonlinear principal components,

NLPCk ðb
d
i ; c

d
j Þ, is repeated. Then, the coefficients, fðb

�
i ; c
�
j Þ : i; j ¼ 1; . . . ;Mg, whose principal components have

the minimum Euclidean distance from those of new data, are selected among ðbu
i ; c

u
j Þ in order to compute the

residual errors, �d
xðtÞ and �

d
yðtÞ:

�dxðtÞ ¼ xdðtÞ �
Xp

i¼1

bd
i xd ðt� iÞ �

Xq

j¼1

cd
j ed

xðt� jÞ; �d
yðtÞ ¼ xdðtÞ �

Xp

i¼1

b�i xdðt� iÞ �
Xq

j¼1

c�j ed
xðt� jÞ, (20)

where poM and qoM. The residual errors, �d
yðtÞ and �

d
xðtÞ, are employed for subsequent damage diagnosis.

The first damage indicator is defined as the standard deviation ratio of two residual errors, i.e.,
sð�d

yðtÞÞ=sð�
d
xðtÞÞ. If a new data set is obtained from a damaged system, the ratio of two standard deviations, i.e.,
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sð�d
yðtÞÞ=sð�

d
xðtÞÞ, is expected to increase at the damage location as the discrepancy between (bd

i ; c
d
j ) and

(b�i ; c
�
j ) rises.

Secondly, a simple hypothesis test is performed for damage diagnosis using two standard deviations of the
residual errors, i.e., sð�d

xðtÞÞ and sð�d
yðtÞÞ. This test is also based on the premise that damage, if exist, will

increase a standard deviation of the residual error �d
yðtÞ beyond a specified threshold s1:

H0 : sð�d
yðtÞÞps0; H1 : sð�d

yðtÞÞXs1; 0os0os1o1, (21)

where s0 and s1 are user-specific thresholds that are related with sð�d
xðtÞÞ. For example, s0 ¼ 1.3sð�d

xðtÞÞ and
s1 ¼ 1.4sð�d

xðtÞÞ in this study as identical as those employed in Sohn et al. [17]. Generally speaking, s0 and s1
are determined by using signals from undamaged cases as well as a few damaged cases [17].

This hypothesis test diagnoses the structure being monitored as undamaged, i.e., accepts the null hypothesis
H0, if sð�d

yðtÞÞ is not larger than a user-specified value, s0. On the other hand, if sð�d
yðtÞÞ becomes equal or larger

than s1, then the null hypothesis H0 is rejected and the system is diagnosed as damaged.
A sequential probability ratio test adopted here is one of the simplest statistical inference methods.

Compared to the conventional fixed sample size test, the sequential probability ratio test is shown to perform a
hypothesis test with a smaller number of observations [16]. Furthermore, the sequential probability ratio test is
suitable for continuous monitoring. For a sequence of residual errors, f�dy ðtÞ : t ¼ 1; . . . ;Tg, a set of data
E ¼ ½�d

yð1Þ; . . . ; �
d
yðTÞ� can be constructed.

Using the sequential probability ratio test, the hypothesis test in Eq. (21) can be reformatted as follows. At
stage n(pT), the sequential probability ratio test makes three kinds of decisions based on the following Zn

statistics:

Accept H0 if Znpzu; reject H0 if ZnXzl ; continue monitoring if zlpZnpzu, (22)

where zl and zu represent lower and upper bounds of Zn, respectively. These lower and upper bounds are
approximated by Wald [31]:

zu ffi ln
b

1� k
and zl ffi ln

1� b
k

, (23)

where k and b are user-specified upper bounds for type I and II errors, respectively [31]. Zn is the transformed
random variable and it can be computed as follows:

Zn ¼
XN

i¼1

zi; where zi ¼
1

2
ðs�20 � s�21 Þð�yðiÞ � mÞ2 � ln

s1
s0

, (24)

where m is mean of a normal distribution that defines a conditional distribution for zi [17].

5. An experimental damage diagnosis example considering data normalization

The proposed method is applied to experimental data sets in order to investigate its capability of damage
diagnosis especially in the presence of an unmeasured operational variation. In Oh and Sohn [26], the
proposed data normalization technique is applied to the numerical data simulated from a computer hard disk
drive model. Data were simulated based on an assumption that dynamic properties of the system depend on
temperature, and novelty detection incorporated with kernel principal component analysis was able to detect
damage in the presence of temperature variation.

In this study, data normalization capability of the proposed method to an external operational variation is
investigated using an eight-dof mass–spring system shown in Fig. 3. For meaningful comparison, the same
data set used by Sohn et al. [17] is utilized.

The experimental system is composed of eight masses connected in series with springs. The eight masses are
denoted as m1, m2,y,m8 starting from the closest one to the shaker (see Fig. 3). The motions of eight masses
are constrained in one direction, i.e., along the rod, and all masses, m2�m8, weigh 419.4 g except the first mass,
m1, that weights 559.3 g due to an extra component connected to the shaker. Stiffness of all springs is
56.7 kNm�1 and damping is caused primarily by Coulomb friction. The measured quantities are acceleration
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Fig. 3. Experimental setup of an eight-dof system: (a) an eight-dof system attached to a shaker (b) an installed bumper to simulate

nonlinear damage.

Table 1

Damage scenarios investigated in this study.

Damage case Damage location Input levels (V) No. of data

0 –a 3, 4, 5, 6, 7 75

1 m1–m2 3, 4, 5, 6, 7 25

2 m5–m6 3, 4, 5, 6, 7 25

3 m7–m8 4, 5, 6, 7 20

a‘‘–’’ means no bumper is installed for this case.
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responses of all masses to random excitations generated by a 215N peak force electro-dynamic shaker.
Additional details of the experimental setup can be found in Ref. [17].

Nonlinear damage is simulated by an impact of two adjacent masses, and the impact is caused by an
installed bumper that limits the movement between those masses. The simulated nonlinear damage can be
regarded as the closing of a crack in vibration and initial clearance is set to zero for all damage cases.

Table 1 shows four different damage scenarios selected in this study. Damage case 0 corresponds to an
undamaged state. Damage located at m1, for example, implies that a bumper is installed between m1 and m2,
and all other damage cases are defined similarly. For each damage case, the root mean square input level
varies from 3 to 7V and the same experiment is repeated 5 times for each input level except damage cases
0 and 3. For damage case 0, the experiment is performed 15 times for each input level, and, for damage case 3,
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Fig. 4. Correlation between the input excitation (V) and the first principal component at location m2.
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the input level varies from 4 to 7V instead of 3 to 7V. Among 75 time signals, i.e., 15 time series from each
input level, obtained for the undamaged case, 45 time series are used as baseline data. An operational variation
of the eight-dof system is represented by the unmeasured changes of the input levels.

The coefficients ðbu
i ; c

u
j Þ of AR-ARX models are estimated at each dof by using the acceleration responses

measured from the undamaged structure: fðau
i Þ : i ¼ 1; . . . ; 30g and fðbu

i ; c
u
j Þ : i; j ¼ 1; . . . ; 5g are selected to be

consistent with Ref. [17]. The correlation between the operational variation, i.e., the input excitation level, and
the first principal component at mass m2 is shown in Fig. 4. Note that only the first principal component is
extracted, since the input excitation level is considered the only operational variability. Monotonically
decreasing relationship reveals latent correlation between the first principal component and the input
excitation level, which is seemingly undistinguishable but immanent inside of data. Similar monotonic
relationships are found at the other mass locations as well. In reality, however, it may be difficult to decide the
correct number of nonlinear principal components in advance, since it is not simple to identify all potential
environmental and operational variations that affect the extracted features. Note that the proposed kernel
principal component analysis is more flexible than auto-associative neural network because it can extract as
many principal components as desired. On the other hand, auto-associative neural network needs to re-design
the network, i.e., the number of neurons in mapping and de-mapping layers, every time the number of
principal components needs to be changed.

For kernal principal component analysis, a width of Gaussian kernel, r, needs to be determined prior to the
calculation of kernel functions, k(xi,xj) ¼ exp(�||xi�xj||

2/r2), i,j ¼ 1,yN. The r value is automatically
determined to maximize the information (variance) of the first principal component since it is relevant to the
operational variation. To accomplish this, the width value that maximizes the difference between the first and
second eigenvalues is selected. For example, the difference reaches its maximum when r ¼ 1.95 for the baseline
data obtained from m8. The widths for all the other locations are estimated in a similar fashion, and they are
0.70, 1.60, 1.00, 0.75, 1.70, 2.30, 2.85 and 1.95 at m1 through m8, respectively.

When a new data set is recorded from an unknown state, the first principal component at each dof is
computed. Then, fðb�i ; c

�
j Þ : i; j ¼ 1; . . . ; 5g, whose principal component has the minimum Euclidean distance to

that of the new data, are selected from the baseline data in order to compute �d
yðtÞ in Eq. (20). This procedure is

repeated for each dof. Note that it is not necessary to measure the input excitation level during this procedure.
The first diagnosis is performed using the standard deviation ratio of �d

y ðtÞ to �
d
xðtÞ, i.e., sð�

d
y ðtÞÞ=sð�

d
xðtÞÞ, for

damage cases 0–3. When the AR-ARX coefficients are extracted from a possibly damaged structure, the
residual error, �dy ðtÞ, is expected to increase with respect to �d

xðtÞ as stated before. The ratios for all damage
cases and mass locations are listed in Table 2. Each entity in Table 2 is the averaged value obtained from 75,
25, 25, and 20 time signals for damage cases 0, 1, 2, and 3, respectively.

The ratio is around 1 when damage is absent, while the ratio reaches its maximum at the damage location.
As shown in Table 2, the maximum value of sð�dy ðtÞÞ=sð�

d
xðtÞÞ is observed at the location where the bumper is

installed except damage case 1. Similar results have been reported by Sohn et al. [17] as shown in parentheses
in Table 2. For damage case 1, it was speculated that responses were masked by the excitation signal, since m1

was rigidly connected to the shaker.
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Table 2

The ratios of standard deviations sð�dy Þ=sð�
d
xÞ.

Damage case Degree of freedom

m1 m2 m3 m4 m5 m6 m7 m8

0 1.0043a 1.0138 1.0526 1.0285 1.0350 1.0410 1.0294 1.0350

(1.0021) (1.0061) (1.0185) (1.0106) (1.0213) (1.0278) (1.0226) (1.0230)

1 1.0144 1.8651 1.1514 1.0768 1.0614 1.0391 1.0256 1.0724

(1.0152) (1.5322) (1.1246) (1.0695) (1.0461) (1.0373) (1.0308) (1.0287)

2 1.0033 1.0155 1.0645 1.0354 1.7100 1.2187 1.0571 1.0621

(1.0024) (1.0116) (1.0290) (1.0282) (1.7309) (1.2194) (1.0510) (1.0347)

3 1.0033 1.0205 1.0510 1.0614 1.0915 1.0672 1.8225 1.4707

(1.0018) (1.0141) (1.0347) (1.0186) (1.0689) (1.1765) (1.7158) (1.3566)

aThe ratio presented in this table is the averaged value from all input levels. The values in the parenthesis are obtained from Sohn et al.

[17] and provided here for comparison. Boldface with an underline indicates the identified damage.

Table 3

Results of a sequential probability ratio test using H0 : sð�dy Þp1:3sð�dxÞ and H1 : sð�dy ÞX1:4sð�dxÞ.

Damage case Degree of freedom

m1 m2 m3 m4 m5 m6 m7 m8

0 0/75 0/75 0/75 0/75 0/75 0/75 0/75 0/75

(0/75) (0/75) (0/75) (0/75) (0/75) (0/75) (0/75) (0/75)

1 0/25 25/25 0/25 0/25 0/25 0/25 2/25 0/25

(0/25) (25/25) (0/25) (0/25) (0/25) (0/25) (0/25) (0/25)

2 0/25 0/25 0/25 0/25 22/25
a 2/25 0/25 0/25

(0/25) (0/25) (0/25) (0/25) (23/25) (1/25) (0/25) (0/25)

3 0/20 0/20 0/20 0/20 0/20 0/20 20/20 13/20

(0/20) (0/20) (0/20) (0/20) (0/20) (2/20) (20/20) (16/20)

a‘22/25’ means that the null hypothesis is rejected 22 times, i.e., damage is detected 22 times, out of all 25 time signals tested. The values

in the parenthesis are obtained from Sohn et al. [17] and provided here for comparison. Boldface with an underline indicates the identified

damage.
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Table 3 presents the second damage diagnosis performed by the sequential probability ratio test. For this
sequential probability ratio test, the necessary parameters are set identical to the ones in Ref. [17]
(b ¼ k ¼ 0.001, s0 ¼ 1:3sð�dxðtÞÞ and s1 ¼ 1:4sð�dxðtÞÞÞ. As was explained in Ref. [17], these upper and lower
bounds, i.e., s0 and s1, are determined by obtaining measurements from a wide range of an undamaged system
as well as of a damaged system to make damage diagnosis more reliable. The entity of ‘0/75’ in Table 3, i.e. the
one in the ‘Damage Case 0’ row and in the ‘m1’ column means that the null hypothesis, H0, is accepted for all
75 time signals tested, and ‘22/25’ means that the null hypothesis is rejected 22 times, i.e., damage is detected
22 times, out of all 25 time signals tested. The location where the maximum number of rejection occurs
coincides with the actual damage location. In terms of misclassification, the proposed method is as effective as
the previously employed auto-associative neural network.

The efficiency of data normalization is investigated by studying a false positive prediction rate of damage.
Table 4 shows false prediction of damage by the sequential probability ratio test that utilizes only a fraction of
45 baseline data. For example, the entity of ‘5/75’ represents that 5 false indications are observed out of 75
number of entire tests when only 9 time signals excited at 3V input level are selected to comprise
fðbu

i ; c
u
j Þ : i; j ¼ 1; . . . ; 5g. Note that, when the entire 45 baseline signals from a range of 3 to 7V are used, no

false indication of damage is observed among 75 test signals from an undamaged state as shown in the last
row of Table 4. Table 4 demonstrates that using a limited data set as the baseline data can increase the false
alarm rate. The entities in parentheses in Table 4 present the false positive study reported in Sohn et al. [17].
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Table 4

Results of a sequential probability ratio test using H0 : sð�dy Þp1:3sð�dxÞ and H1 : sð�dy ÞX1:4sð�dxÞ.

Baseline data Degree of freedom

m1 m2 m3 m4 m5 m6 m7 m8

3V 0/75 0/75 0/75 0/75 0/75 0/75 5/75a 0/75

(0/75) (0/75) (16/75) (0/75) (0/75) (28/75) (43/75) (0/75)

4V 0/75 0/75 0/75 0/75 0/75 1/75 0/75 0/75

(0/75) (6/75) (0/75) (0/75) (0/75) (4/75) (0/75) (4/75)

5V 0/75 0/75 0/75 0/75 1/75 0/75 0/75 0/75

(0/75) (0/75) (0/75) (0/75) (0/75) (16/75) (0/75) (0/75)

6V 0/75 0/75 0/75 0/75 2/75 1/75 1/75 0/75

(0/75) (0/75) (0/75) (0/75) (0/75) (0/75) (5/75) (11/75)

7V 0/75 0/75 0/75 0/75 2/75 7/75 0/75 0/75

(0/75) (0/75) (0/75) (0/75) (9/75) (4/75) (0/75) (69/75)

3–7V 0/75 0/75 0/75 0/75 0/75 0/75 0/75 0/75

aEach value in this table shows the number of null hypothesis rejections obtained by sequential probability ratio test when a portion of

baseline data is utilized to construct fðbu
i ; c

u
j Þ; i; j ¼ 1; . . . ; 5g. For example, ‘5/75’ indicates that the null hypothesis is rejected 5 times out of

75 entire signals when only time signals measured at 3V input level are used as baseline data. The values in the parenthesis are obtained

from Sohn et al. [17] and provided here for comparison. Boldface with an underline indicates the identified false positive prediction.

Table 5

The effect of limited baseline data on the sequential probability ratio test using H0 : sð�dy Þp1:3sð�d
xÞ and H1 : sð�dy ÞX1:4sð�dxÞ: only 27 time

signals in the range of 3V, 4V and 5V are utilized as baseline data.

Damage case Degree of freedom

m1 m2 m3 m4 m5 m6 m7 m8

0 0/75 0/75 0/75 0/75 0/75 0/75 0/75 0/75

1 0/25 25/25
a 0/25 0/25 0/25 0/25 2/25 0/25

2 0/25 0/25 0/25 0/25 23/25 4/25 0/25 0/25

3 0/20 0/20 0/20 0/20 0/20 0/20 20/20 17/20

aEach value in this table shows the number of null hypothesis rejections obtained by sequential probability ratio test when a limited

baseline data are utilized to construct fðbu
i ; c

u
j Þ; i; j ¼ 1; . . . ; 5g. For example, ‘25/25’ indicates that the null hypothesis is rejected 25 times

out of 25 entire signals when only time signals measured at 3V, 4V, and 5V input level are used as baseline data. Boldface with an

underline indicates the identified damage.
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Note that the same subset of the entire 45 data sets was employed to construct the baseline data. Comparison
reveals that kernel principal component analysis produces a smaller number of false alarms than auto-
associative neural network.

In Sohn et al. [17], it was claimed that baseline data need to be acquired from a wide range of environmental
and operational conditions in order to make reliable damage prediction. In this study, generalization
performance of kernel principal component analysis is examined to see if reliable damage detection can be
achieved when only a limited range of baseline data is available. Table 5 shows data normalization capability
of the proposed kernel principal component analysis by using a limited number of baseline data, i.e., 27 time
signals consisting of 9 acceleration histories from each of 3, 4 and 5V input excitation levels. Note that the
previous sequential probability ratio test in Table 3 utilizes 45 baseline signals obtained from 3 to 7V input
excitation levels. Except the number of the baseline data, all the other parameters in Table 5 are kept identical
to the ones in Table 3. Damage diagnosis is performed via the sequential probability ratio test for each damage
case defined in Table 1.

Sequential probability ratio test results performed along with kernel principal component analysis in
Table 5 in comparison with those along with auto-associative neural network in Table 3 indicate that the
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proposed method may be applicable for data normalization even when all possible environmental and
operational conditions are not fully covered during the construction of the baseline data; boldfaces with
underlines such as 25/25, 23/25, and 20/20 for damage case 1, 2, and 3, respectively, indicate the number of
identified damage, which is identical for both methods. However, this finding should not be generalized in
haste, since it is concluded only from one experimental example. Note that a large amount of data spanning a
wide range of operational conditions is typically required to achieve reliable data normalization. The results
presented in Tables 4 and 5 indicate that the success of data normalization depends on not only the availability
of baseline data but also the nonlinear principal component analysis method selected to characterize the latent
relationship. In the next section, advantages of kernel principal component analysis over auto-associative
neural network are addressed.
6. Comparison between kernel principal component analysis and auto-associative neural network

There are several ways to realize nonlinear principal component analysis including auto-associative neural
network, kernel principal component analysis, principal curves, and so on. Here, advantages of kernel
principal component analysis over auto-associative neural network are described. Refer to Diamantaras and
Kung [32] for more details of other nonlinear principal component analysis algorithms.

The first advantage of kernel principal component analysis is its explicit use of regularization and better
generalization ability due to regularization. Regularization is one of the techniques that control over-fitting by
adding a penalty term, for example, wTw in an objective function [29]. Regularization is known not only to
prevent over-fitting but also to enhance prediction capability of new data sets [29]. Table 5 demonstrates the
generalization performance of kernel principal component analysis. Comparison between Tables 3 and 5
reveals that the proposed method using kernel principal component analysis is able to achieve damage
diagnosis comparable to the one obtained by auto-associative neural network although a smaller set of
acceleration signals are used for baseline data: the baseline data used for kernel principal component analysis
consist of the signals excited by 3 to 5V input levels while the entire baseline data excited by 3 to 7V are
employed for auto-associative neural network.

Secondly, it should be emphasized that the solution obtained by kernel principal component analysis is
unique and global, since kernel principal component analysis solves a simple eigenvalue problem. On the other
hand, auto-associative neural network requires solving a complex nonlinear optimization problem by starting
the optimization from several different initial values to avoid local minima.

In addition, kernel principal component analysis is able to control the number of extracted principal
components pertaining to environmental and operational parameters without re-designing the algorithm. For
the eight-dof mass–spring system examined in this study, only the first principal component is extracted since
there is only one operational variation: the excitation level. However, because the number of operational and
environmental parameters is not known a priori in practice, the flexibility in extracting as many principal
components as necessary without additional efforts is advantageous. Note that the architecture of auto-
associative neural network needs to be re-designed every time when different numbers of principal components
are extracted.

Finally, kernel principal component analysis is computationally efficient. Since kernel principal component
analysis solves a simple eigenvalue problem, it is computationally more attractive than auto-associative neural
network that needs to solve a complex nonlinear optimization problem. This advantage renders the proposed
method to be suitable for on-line health monitoring.
7. Conclusions

This paper introduces a data normalization method that can be employed for damage diagnosis in the
presence of environmental and operational variations. Kernel principal component analysis, i.e., nonlinear
principal component analysis based on unsupervised support vector machine, is integrated with an AR-ARX
discrete-time prediction model and a sequential probability ratio test in order to distinguish the effect of
damage from those caused by environmental and operational variations on damage diagnosis.
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The proposed damage diagnosis method can be summarized as follows: (1) the coefficients of an AR-ARX
model are estimated by fitting the AR-ARX model to the time signals obtained from the pristine condition of
the structure, and these coefficients are used as the baseline data for subsequent kernel principal component
analysis; (2) kernel principal component analysis performs nonlinear principal component analysis and
characterizes the nonlinear correlations between the extracted AR-ARX coefficients and unmeasured
operational parameters for data normalization; (3) when new time signals are obtained from a potentially
damaged structure, the computation of the AR-ARX coefficients and the corresponding nonlinear principal
components is repeated as before; (4) the closest AR-ARX coefficients, whose principal components have the
minimum Euclidean distance to those of new data, are selected from the baseline data; (5) if a new data set is
obtained from a damaged condition, the discrepancy between the AR-ARX coefficients estimated from the
potentially damaged condition and the closest AR-ARX coefficients obtained from the baseline data is
expected to increase. Subsequently, the prediction errors obtained by fitting the closest baseline AR-ARX
model to the new data set will increase with respect to the prediction errors obtained using the new AR-ARX
model. Based on this premise, a damage classifier is developed using sequential probability ratio test.

The eight-dof mass–spring example presented in this study demonstrates that the proposed method is able
to detect damage under a time-varying excitation condition without explicitly measuring the excitation level.
Compared with auto-associative neural network previously reported in Ref. [17], kernel principal component
analysis produces smaller number of false alarms and provides better damage diagnosis even when a limited
number of baseline data is used.

In view of the presented results, this study demonstrates that the proposed method can be a promising on-
line tool for data normalization. Several advantages that characterize the proposed method are:
(1)
 reliable damage diagnosis with smaller numbers of misclassification (see Tables 2 and 3),

(2)
 better generalization performance in damage diagnosis (see Tables 4 and 5),

(3)
 assurance of a unique and global solution,

(4)
 flexibility in adjusting the number operational and environmental parameters without re-designing the

algorithm,

(5)
 rapid operation.
So far, the proposed method has been applied to a simulated data set from a computer hard disk drive model
[26] and an experimental data set from the eight-dof system. Additional studies are underway to investigate the
robustness of the proposed method in harsh field environments.
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